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Abstract 
This paper deals with modification of the discontinuous shapeless particle method for 

two-dimensional problems of gas dynamics. In the previous version of the method the parti-
cles’ shape determined their interaction and this defined high quality of final result, especially 
in one-dimensional case. In order to make away with attachment to the shape of particles, in 
two-dimensional setting along with particles’ heights (solution of differential problem) and 
their positions in the space, the another invariant was introduced, and it’s represented by ar-
ea of trapezoid, where the particles heights are the bases of trapezoid, and the segment which 
connects their centers is a lateral side. This invariant can be interpreted as a trace of mass 
conservation in the space between two particles, the masses of those also don’t change (exact 
conservation is a fundamental feature of the particle methods). Article describes the compari-
son of numerical solutions received with the help of modified method of particles, and nu-
merical solutions obtained through the use of open software package OpenFOAM, with refer-
ence analytical solution in the L2 norm using the example of problem on supersonic flow 
around a wedge and with formation of an angle shock wave. The speed of overtaking flow and 
flow incidence angle are varying. The introduced visualization of results provides a clear 
overview of features peculiar to particles method for problems the solution of which comes 
with heavy gradients. Comparative verification is performed in the framework of implemen-
tation of generalized computational experiment, which helps to get the solution for a class of 
problems when there is a variation of defining parameters. The present paper is a part of the 
research on comparative verification of numerical methods in the space of defining parame-
ters.   

Keywords: Discontinuous particle method, computational fluid dynamics, oblique 
shock. 

 

1. Introduction 
Nowadays, comparative verification of numerical methods is getting more and more in-

demand in science and technology. Usually, the comparative verification is conducted on a 
class of problems that have an exact or numerical solution, acknowledged as reference, or ex-
perimental data. 

This paper constitutes the part of investigations on comparative verification of numerical 
methods, held with the help of building up a generalized computational experiment. General-
ized computational experiment is computational technology, built on synthesis of mathemati-
cal modeling approaches, parallel computations and visual analysis of multi-dimensional da-
ta. Methods of making the generalized computational experiment are extensively described in 
works [1, 2]. Implementation of the generalized computational experiment helps to obtain 
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and process the numerical solutions not only for one particular problem, but also for the class 
of problems, which is set in the area of space of determining parameters. This turned out to 
be quite a useful feature in organizing the comparative verification of numerical methods. 
The investigations dedicated to comparative verification of numerical methods with the help 
of the generalized computational experiment, are presented in works [3–6]. 

Presently, the methods of numerical modeling find expanding applications as addition to 
the experiment and as research techniques replacing the experiment in different academic 
fields [7]. 

In solving evolutionary problems the three classes of numerical methods of modeling are 
widely used: finite-difference methods, finite element methods and particle methods [8]. 

Particle methods are actively used in modeling the problems of gas dynamics. The model 
of continuous media is replaced with discrete model, assembly of particles. Each particle has 
a set of attributes, such as mass, speed, position in space. The condition of the physical sys-
tem is defined by the set of attributes of a finite number of particles, and evolution of the sys-
tem is defined by the laws of particles’ interaction. 

There are three basic types of particle methods distinguished in scientific literature [9]: 
particle-particle (PP), particle-mesh (PM) and particle-particle-particle-mesh (P3M). 

PP methods use the Lagrangian approach, where the particles move together with the 
medium. The the PM methods use Eulerian-Lagrangian approach. The computational do-
main is divided with a fixed mesh (Euler approach), but the particles which move through 
Eulerian mesh are also taken into consideration (Lagrangian approach). Particles serve for 
defining liquid’s parameters (mass, energy, speed), and Eulerian mesh is used for defining 
field parameters (pressure, density, temperature). 

In PP methods the force influencing each single particle is calculated by means of sum-
ming up the forces from the side of all other particles, in the PM methods the force is a field’s 
value and is approximated on a mesh. The P3M methods is a hybrid of PP and PM, where for 
nearby particles (till some preset distance) the force is defined the same way as in PP meth-
ods, and for more distant ones, the same way as in PM methods. 

In PP methods the condition of the physical system is described by the set of positions 
and speeds of particles. With transition to a new time layer these values recounted with the 
use of interaction forces and motion equations. Such methods are computationally expensive, 
in the context of PM and P3M. 

In PM methods the field values, which fill the entire space of the physical system, are ap-
proximately presented as values in regularly positioned mesh nodes. As a result, the force is 
calculated more economically and quickly, but way less precisely rather than with the usage 
of PP method. 

The smoothed particle hydrodynamics (SPH) [10], particle finite element method 
(PFEM) [11] and discontinuous particle method [12, 13] are referred to as the first type. The 
second type includes the particle-in-cell method (PIC) [14], large-particle method [15], grid-
characteristic methods [16, 17]. 

As it was shown in articles [12, 18], the discontinuous particle method enables the calcu-
lation of discontinuities with high precision, which is extremely important for nonlinear 
equations in partial derivatives of hyperbolic type. 

2. Fundamentals of the Discontinuous Particle Method 
Suppose there are 𝑁 material points that are at the initial moment in time in coordinates 

𝑥𝑖
0 and moving at speeds 𝑣𝑖(𝑥,𝑡) (𝑖 = 1, … , 𝑁). This verbal formulation corresponds to the 

Cauchy problem: 

{

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝑣(𝑥𝑖(𝑡), 𝑡),

𝑥𝑖(0) = 𝑥𝑖
0,  𝑖 = 1, … , 𝑁.

 (1) 

The article [10] shows the transition from (1) to the transfer equation in differential form: 



{

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑣(𝑥, 𝑡)𝑢(𝑥,𝑡)

𝜕𝑥
= 0,

𝑢(𝑥,0) = 𝑢0(𝑥).
 (2) 

That is, if the coordinates of the points change according to the system of equations (1), 
then the density 𝑢(𝑥, 𝑡)  is a generalized solution to the Cauchy’s problem for the transport 

equation (2). 
Let's describe the modification of the discontinuous method with a new variant of density 

correction, previously presented in [19]. The particles selected for correction will be called in-
teracting, and the correction process will be called interaction. Let's introduce a uniform grid 
in time with a step 𝜏. We consider the system as a set 𝑁 macroparticles. To describe the parti-

cles, we introduce the following notation: 𝑥𝑖
𝑘 is the coordinate of the center of the i-th particle 

at the k-th moment of time, 𝑣𝑖
𝑘 is the speed of the particle, 𝐻𝑖

𝑘 is the height (density) of the 
particle. Also each particle has a time invariant mass, which indicates that the method is con-
servative. If in the past we used the width of the particle ∆𝑥 (Fig. 1), then the new algorithm is 

based on the conservation of the mass between the particles. 
 

 
Figure 1  –Approximation of the function by a set of rectangular particles 

 
The mass between the coordinates of the particles is equal to the half-sum of the particle 

masses, and, in the absence of diffusion, it should also remain constant. Let’s introduce a no-
tation 𝑆𝑖 is the trace of the mass located between the (i-1)-th and i-th particles. We calculate 
the trace of mass 𝑆𝑖 as the area of trapezoids: 

𝑆𝑖 =
𝐻𝑖 +𝐻𝑖−1

2
(𝑥𝑖− 𝑥𝑖−1). (3) 

 

 
Figure 2 –Introduction of the mass trace 

 



Remember the values 𝑆𝑖
0 at the initial point of time 𝑡 = 0. Let's perform the procedure of 

initializing the parameters of the particles at the initial point in time. Let be given the initial 
density 𝑢0(𝑥). The coordinates of the particles 𝑥𝑖

0 can be evenly arranged on the design re-
gion, where 𝑖 = 1, … , 𝑁. 

𝐻𝑖
0 = 𝑢0(𝑥𝑖

0),   𝑖 = 1, … , 𝑁; 

𝑆𝑖
0 =

1

2
(𝐻𝑖−1

0 + 𝐻𝑖
0)(𝑥𝑖

0− 𝑥𝑖−1
0 ),   𝑖 = 2, … , 𝑁. (4) 

As shown in [10], the coordinates of the particles in solving the Hopf’s equation must sat-
isfy the system of equations: 

{

𝑑𝑥𝑖(𝑡)

𝑑𝑡
=
1

2
𝐻𝑖 ,  𝑖 = 1, … , 𝑁;

𝑥𝑖(0) = 𝑥𝑖
0.

 (5) 

Recall that the algorithm of the particle method is built as a predictor-corrector. First, we 
solve the system of ordinary differential equations by Euler's explicit method: 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 +
1

2
𝜏𝐻𝑖

𝑘 ,  𝑖 = 1, … , 𝑁. (6) 

After the particles shift, the distances between them change, which leads to a change in 
the area of the trapezoid. Therefore, at the stage of the corrector, it is necessary to change the 
heights of the particles so that the mass between the particles remains constant. Consider the 
possible cases of particle interaction (Fig. 3): 

 

 
Figure 3 – Particle interaction options 

 
A particle with a higher density runs over a particle with a lower density, which leads to a 

decrease in the trapezoidal area between the particles. In this case, in order to preserve the 
area of the trapezoid, we will increase the height of the particle with a lower density. 

A particle with a higher density moves away from a particle with a lower density, which 
results in an increase in the trapezoidal area between the particles. In this case, to preserve 
the area of the trapezoid, we will reduce the height of the particle with a higher density. 

Using these rules of particle rearrangement and selection criteria and as a result of the in-
teraction of the particle with one of the neighbors, the area of the trapezoid with another 
neighbor for which correction has already been made can change, which indicates the error of 
the algorithm. The particle interactions that arise in this way are not taken into account . 

The corrector changes the height of the i-th particle (𝑖 = 2,… , 𝑁) so that the trapezoidal 
area between the particles remains constant: 

1

2
(𝐻𝑖

𝑘+1 +𝐻𝑖−1
𝑘 )(𝑥𝑖

𝑘+1 − 𝑥𝑖−1
𝑘+1) = 𝑆𝑖

0. (7) 

Therefore, the height of the i-th particle in the new (𝑘 + 1) step in time is defined as: 



𝐻𝑖
𝑘+1 =

2𝑆𝑖
0

𝑥𝑖
𝑘+1 − 𝑥𝑖−1

𝑘+1
−𝐻𝑖−1

𝑘 . (8) 

3. Particle method for gas dynamics equations 
The equations of gas dynamics are expressions of the general laws of mass, momentum, 

and energy. Following [20, 21] let's write down a system of equations for the two-dimensional 
case in Euler’s variables: 

{
 
 
 
 
 

 
 
 
 
 

𝜕𝜌

𝜕𝑡
+
𝜕𝑢𝜌

𝜕𝑥
+
𝜕𝑣𝜌

𝜕𝑦
= 0

𝜕𝜌𝑢

𝜕𝑡
+
𝜕(𝑢𝜌𝑢)

𝜕𝑥
+
𝜕(𝑣𝜌𝑢)

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
𝜕𝜌𝑣

𝜕𝑡
+
𝜕(𝑢𝜌𝑣)

𝜕𝑥
+
𝜕(𝑣𝜌𝑣)

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
𝜕𝐸

𝜕𝑡
+
𝜕𝑢𝐸

𝜕𝑥
+
𝜕𝑣𝐸

𝜕𝑦
= −

𝜕𝑝𝑢

𝜕𝑥
−
𝜕𝑝𝑣

𝜕𝑦

𝑝 = (𝛾 − 1) (𝐸 −
𝜌

2
(𝑢2 +𝑣2))

 (9) 

Perfect gas, 𝛾 = 1.4. 𝜌, 𝑢, 𝑣,  𝑝, 𝐸 is density, 𝑥 and 𝑦-components of velocity, pressure and 

total energy. 
The algorithm for solving a two-dimensional problem is similar to a one-dimensional 

case. The heights of the particles are found from the initial condition, functions 𝜌(𝑥, 𝑦, 0), 
𝜌𝑢(𝑥,𝑦, 0), 𝜌𝑣(𝑥, 𝑦, 0), 𝐸(𝑥, 𝑦, 0) calculated at the centers of particles bases (the points 𝑥𝑖(0), 
𝑦𝑖(0)). 

First, as in the one-dimensional case, we solve the systems of ordinary differential equa-
tions for the coordinates of 4 types of particles by the Euler’s method. 

In the two-dimensional case, the partner for interaction is chosen by minimizing the "im-
pact" parameter — the angle 𝜃 between the vector of relative velocity and the vector connect-

ing the centers of the particles (algorithmically maximizing the cosine of this angle). 

Let 𝐴𝐵⃗⃗ ⃗⃗  ⃗ be a vector connecting the centers of particles i and j, 𝑣 𝑖  and 𝑣 𝑗 be the velocity vec-

tor of the particles. Then (Fig. 4): 

cos(𝜃) =
(𝐴𝐵⃗⃗ ⃗⃗  ⃗, 𝑣 𝐵 −𝑣 𝐴)

|𝐴𝐵⃗⃗ ⃗⃗  ⃗||𝑣 𝐵 −𝑣 𝐴|
. (10) 

 

 
Figure 4 – Finding the impact parameter 

 
Selecting the j-th particle for interaction, we proceed to the one-dimensional problem 

(Fig.5). 
 



 
Figure 5 – Transition to a one-dimensional problem 

 
Next, with the help of a corrector, we change the height of the i-th particle similarly (7) so 

that the trapezoidal area between the particles remains constant: 

1

2
(𝐻𝑖

𝑘+1 + 𝐻𝑗
𝑘)√(𝑥𝑖

𝑘+1 −𝑥𝑗
𝑘+1)

2
+ (𝑦𝑖

𝑘+1 −𝑦𝑗
𝑘+1)

2
= 𝑆𝑖𝑗

0 . (11) 

From here we find the preliminary height (so far without taking into account the pressure 
forces): 

𝐻𝑖
𝑘+1 =

2𝑆𝑖𝑗
0

√(𝑥𝑖
𝑘+1 − 𝑥𝑗

𝑘+1)
2
+ (𝑦𝑖

𝑘+1 − 𝑦𝑗
𝑘+1)

2

− 𝐻𝑗
𝑘 . 

(12) 

The next step of the algorithm is to take into account the forces of pressure. The differ-
ence in pressures to the left and right of the particle leads to a change in the momentum and 
energy of the particle, that is, to an increase in the volume of the corresponding particles. 
Similarly [10], we obtain calculation formulas: 

𝑉𝜌𝑢𝑖(𝑡𝑗+1) = 𝑉𝜌𝑢𝑖(𝑡𝑗) + 𝜏 (𝑝1𝑖
−(𝑡𝑗)− 𝑝1𝑖

+(𝑡𝑗)) 

𝑉𝜌𝑣𝑖 (𝑡𝑗+1) = 𝑉𝜌𝑣𝑖(𝑡𝑗) + 𝜏 (𝑝2𝑖
−(𝑡𝑗)− 𝑝2𝑖

+(𝑡𝑗)) 

𝑉𝐸𝑖 (𝑡𝑗+1) = 𝑉𝐸𝑖 (𝑡𝑗) + 𝜏 (𝑝1𝑖
−(𝑡𝑗)𝑢1𝑖

− (𝑡𝑗) − 𝑝1𝑖
+(𝑡𝑗)𝑢1𝑖

+ (𝑡𝑗))

+ 𝜏 (𝑝2𝑖
−(𝑡𝑗)𝑣2𝑖

− (𝑡𝑗) − 𝑝2𝑖
+(𝑡𝑗)𝑣2𝑖

+ (𝑡𝑗)) 

(13) 

The density, momentum, and energy values calculated in the previous step make it possi-
ble to determine the pressure at the center of the particle. To do this, you need to use the 
equation of state. 

To determine the values of the pressure and velocity at the boundary of the particle, a 
pressure account scheme based on the "interaction" of the particles is used. If at step in time 
at one of the boundaries of the particle an interaction occurred (in accordance with the crite-
ria described above for a one-dimensional configuration), then the value of the pressure and 
velocity at this boundary was assumed to be equal to the pressure and velocity of the particle 
that caused the rearrangement. If no interaction occurred, the pressure at the boundary was 
supposed to be the same pressure as the center of the particle. 

Thus, the volume of 𝜌𝑢, 𝜌𝑣 and 𝐸 further increases. 

4. Comparison of numerical methods 
We will compare the discontinuous particle method (Particles) with the solvers of the 

open source software package OpenFOAM [22]: rhoCentrlFoam (rCF), pisoCentralFoam 
(pCF), QGDFoam (QGDF). To do this, by all methods we will solve the classical two-
dimensional non-viscous problems in modeling the oblique shock with all methods. 

The general flow scheme is presented in Figure 6. A supersonic gas flow with Mach num-
ber М falls on a flat plate at an angle of β. Before the start of the plate, an oblique shock S oc-



curs [21]. This problem is considered within the system of the Euler equations and has an an-
alytical solution [23]. 

 

 
Figure 6 – Flow diagram 

 
At the input boundary, the parameters of the unperturbed incoming flow are specified. 

On the part of the lower boundary corresponding to the flat plate, a non-flow condition is 
specified. At the output boundary, the boundary conditions are set equal to zero of the deriva-
tives of gas-dynamic functions at the normal to the boundary. At the upper boundary for the 
velocity components, the boundary conditions are set similarly to the conditions for the input 
boundary. For the remaining gas-dynamic functions of the upper limit, the boundary condi-
tions are set to zero of the derivatives of the gas-dynamic functions at the normal to the 
boundary. At the upper boundary for the velocity components, the boundary conditions are 
set similarly to the conditions for the input boundary. For the other gas-dynamic functions at 
the upper boundary, the conditions are set similarly to the conditions for the output bounda-
ry. 

Fig. 7 shows the established solution for the pressure field. Angle of incidence of the in-
coming flow β = 10°, Mach number M = 2. As a result of the steadying, a qualitative picture of 
the flow was obtained, corresponding to the analytical solution. It should be noted that the 
particles are presented in the form of circles for ease of perception. 

 

 
Figure 7  –Pressure distribution 

 



Figure 8 shows an animation of how the particle method works. It can be seen that in the 
region of large gradients, the particle size decreases, which corresponds to the thickening of 
the grid for grid methods. 

 

 
Figure 8 –Animation of the solution of the problem of supersonic flow around a wedge  

by the particle method 
 
Carefully consider the behavior of gas-dynamic functions in the vicinity of the oblique 

shock. Figure 9 shows a comparison of all solvers in the form of pressure distribution along 
the horizontal line AA1 crossing the design area at a distance from the lower boundary of 
y = 0.15 (see Fig. 6). The exact solution is shown by the dotted line. Numerical methods are 
indicated by different colors shown in the corresponding table in Fig. 9. 

 

 
Figure 9 –Pressure distribution along the horizontal line 

 
The presented figure allows you to judge the degree of smearing of the shock wave front 

for all the methods considered. The particle method smears the gap into the smallest number 
of cells, but the shock wave front is shifted towards the area with increased density. Of the 
remaining methods, the best result is given by the solver rhoCentralFoam. The solver QGD-
Foam smears the front of the shock wave, and the resulting oscillations are also noticeable at 
the top of the shock wave. 

Also, to assess the deviation of the obtained numerical results from the known exact solu-
tion in the entire calculated area, we use an analogue of the norms of L2 : 



𝜕𝐿2 = √∑|𝑦𝑚 −𝑦𝑚
𝑒𝑥𝑎𝑐𝑡|2𝑆𝑚

𝑚

√∑|𝑦𝑚
𝑒𝑥𝑎𝑐𝑡|2𝑆𝑚

𝑚

,⁄  (14) 

Here ym  is the pressure p of the particle m, Sm  is the area of the particle. All calculations 
were carried out when setting the following parameters: flow angle β is 6°, 10°, 15°, 20°, Mach 
number M∞ varies from 2 to 3 in increments of 0.5. Thus, the solution was implemented in 
the region of the space of the determining parameters. In the incoming flow, the following 
gas-dynamic parameters were set: pressure P∞ = 101325 Pa, temperature T∞ = 300 K. The set 
of calculations with variable parameters is part of the generalized computational experiment 
described in the works [2–6], where the results of comparative verification of numerical 
methods implemented in the solvers of the open source software package OpenFOAM [21] 
were presented. Tables 1–3 show the result of calculating the error rate for pressure. 

 
Table 1  – Deviation from the exact solution, U=2M 

Angle Particles rCF pCF QGDF 

6 0.012982 0.013287 0.013744 0.014393 
10 0.019326 0.020839 0.021740 0.021850 
15 0.029315 0.029893 0.031227 0.028868 
20 0.037731 0.038307 0.040417 0.032726 

 
Table 2 – Deviation from the exact solution, U=2.5M 

Angle Particles rCF pCF QGDF 

6 0.014283 0.015357 0.016346 0.018502 
10 0.023192 0.025023 0.026259 0.029376 
15 0.035997 0.036192 0.037452 0.042189 
20 0.046724 0.045692 0.047210 0.051230 

 
Table 3 – Deviation from the exact solution, U=3M 

Angle Particles rCF pCF QGDF 

6 0.017582 0.017717 0.018736 0.022639 
10 0.030211 0.029721 0.030812 0.037448 
15 0.046274 0.043788 0.045160 0.055111 
20 0.057836 0.055751 0.057216 0.068286 

 
Figure 10 shows the error surfaces in the L2  norm for all four methods involved in the 

comparison. Calculations for the QGDFoam solver were made with a selected value of α  = 0.1. 
It can be seen that the error surfaces of the solvers rhoCentralFoam and pisoCentralFoam 

are very close, that is, the methods have similar characteristics. At β = 10° and M = 3, the par-
ticle method gives less accuracy than the solver rhoCentralFoam. At β = 15°, the particle 
method gives less accuracy than the solver QGDFoam at M = 2 and less accuracy than the 
solvers rhoCentralFoam and pisoCentralFoam at M = 3. At β=20°, the particle method gives 
less accuracy than the solvers rhoCentralFoam and pisoCentralFoam at M = 3. In other cases, 
the discontinuous particle method is more accurate than the other compared methods. 

 



 
Figure 10 – Error surfaces 

 
Fig. 11 shows a close-up of Fig. 10. The error surface of the QGDFoam solver is hidden, as 

it is very different from other surfaces, which is noticeable in the figure without magnifica-
tion. As can be seen, the particle method for a large Mach number and angle of attack is only 
slightly worse in accuracy than the rhoCentralFoam solver. 

Thus, the generalized computational experiment suggests that the discontinuous particle 
method is suitable for solving problems with a strong gradient. Not as high accuracy as in 
solving one-dimensional problems is due to the fact that although the particle method smears 
the shock wave front much less (as can be seen from Fig.9), the front is shifted, which nega-
tively affects the accuracy of the method. However, there is a great potential for using the dis-
continuous particle method to solve practical problems of mathematical modeling. 

 

 
Figure 11  – Close-up of Figure 10 



5. Conclusion 
With the help of the discontinuous shapeless particle method, the problem of gas dynam-

ics on the formation of an oblique shock is solved. The results obtained were compared with 
the exact solution in the L2  norm. Also, the results were processed using scientific visualiza-
tion tools. It can be seen that the gap is smeared into 2-3 cells relative to the front of the 
oblique shock, which is less than the smearing of the gap with a solver rhoCentralFoam on 
comparable grids. Together, this suggests that the discontinuous particle method solves two-
dimensional problems of gas dynamics, is especially well suited for solving two-dimensional 
problems with emerging shock waves. The obtained result is very interesting from the point 
of view of implementing comparative verification of numerical methods on a reference solu-
tion using a generalized computational experiment [1–6]. 

Historically, the particle method has been used in the problems of finding the interfaces 
of media, gas-dynamic problems of flowing around bodies, and problems of dynamics of mul-
tiphase media. The developed method should increase the computational efficiency of the ap-
plication of particle methods in these traditional areas, for which research is to be done on 
comparative verification and evaluation of the effectiveness of the method. 
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